提出了一种使用神经网络从顺序数据中学习时间延迟系统动力学的新型方法。具有训练延迟的神经网络用于近似延迟微分方程的右侧。我们通过离散时间历史记录并训练相应的神经普通微分方程(节点)来学习动力学,将延迟微分方程与普通微分方程联系起来。给出了使用Chaotic行为数据学习Mackey-Glass方程动力学的示例。在学习了非线性和时间延迟之后,我们证明了神经网络的分叉图与原始系统的分叉图相匹配。
translated by 谷歌翻译
This paper presents a practical global optimization algorithm for the K-center clustering problem, which aims to select K samples as the cluster centers to minimize the maximum within-cluster distance. This algorithm is based on a reduced-space branch and bound scheme and guarantees convergence to the global optimum in a finite number of steps by only branching on the regions of centers. To improve efficiency, we have designed a two-stage decomposable lower bound, the solution of which can be derived in a closed form. In addition, we also propose several acceleration techniques to narrow down the region of centers, including bounds tightening, sample reduction, and parallelization. Extensive studies on synthetic and real-world datasets have demonstrated that our algorithm can solve the K-center problems to global optimal within 4 hours for ten million samples in the serial mode and one billion samples in the parallel mode. Moreover, compared with the state-of-the-art heuristic methods, the global optimum obtained by our algorithm can averagely reduce the objective function by 25.8% on all the synthetic and real-world datasets.
translated by 谷歌翻译
Convolution neural networks (CNNs) have achieved remarkable success, but typically accompany high computation cost and numerous redundant weight parameters. To reduce the FLOPs, structure pruning is a popular approach to remove the entire hidden structures via introducing coarse-grained sparsity. Meanwhile, plentiful pruning works leverage fine-grained sparsity instead (sparsity are randomly distributed), whereas their sparse models lack special designed computing library for potential speedup. In this technical report, we study and present an efficient convolution neural network inference system to accelerate its forward pass by utilizing the fine-grained sparsity of compressed CNNs. Our developed FSCNN is established based on a set of specialized designed sparse data structures, operators and associated algorithms. Experimentally, we validate that FSCNN outperforms standard deep learning library PyTorch on popular CNN architectures such as VGG16 if sufficiently high sparsity exhibits. However, due to the contiguity issue of sparse operators, FSCNN is typically not comparable with highly optimized dense operator. Therefore, coarse-grained (structured) sparsity is our recommendation for generic model compression.
translated by 谷歌翻译
Some recent works observed the instability of post-hoc explanations when input side perturbations are applied to the model. This raises the interest and concern in the stability of post-hoc explanations. However, the remaining question is: is the instability caused by the neural network model or the post-hoc explanation method? This work explores the potential source that leads to unstable post-hoc explanations. To separate the influence from the model, we propose a simple output probability perturbation method. Compared to prior input side perturbation methods, the output probability perturbation method can circumvent the neural model's potential effect on the explanations and allow the analysis on the explanation method. We evaluate the proposed method with three widely-used post-hoc explanation methods (LIME (Ribeiro et al., 2016), Kernel Shapley (Lundberg and Lee, 2017a), and Sample Shapley (Strumbelj and Kononenko, 2010)). The results demonstrate that the post-hoc methods are stable, barely producing discrepant explanations under output probability perturbations. The observation suggests that neural network models may be the primary source of fragile explanations.
translated by 谷歌翻译
This paper presents the TransBoat, a novel omnidirectional unmanned surface vehicle (USV) with a magnetbased docking system for overwater construction with wave disturbances. This is the first such USV that can build overwater structures by transporting modules. The TransBoat incorporates two features designed to reject wave disturbances. First, the TransBoat's expandable body structure can actively transform from a mono-hull into a multi-hull for stabilization in turbulent environments by extending its four outrigger hulls. Second, a real-time nonlinear model predictive control (NMPC) scheme is proposed for all shapes of the TransBoat to enhance its maneuverability and resist disturbance to its movement, based on a nonlinear dynamic model. An experimental approach is proposed to identify the parameters of the dynamic model, and a subsequent trajectory tracking test validates the dynamics, NMPC controller and system mobility. Further, docking experiments identify improved performance in the expanded form of the TransBoat compared with the contracted form, including an increased success rate (of ~ 10%) and reduced docking time (of ~ 40 s on average). Finally, a bridge construction test verifies our system design and the NMPC control method.
translated by 谷歌翻译
Deep learning models, though having achieved great success in many different fields over the past years, are usually data hungry, fail to perform well on unseen samples, and lack of interpretability. Various prior knowledge often exists in the target domain and their use can alleviate the deficiencies with deep learning. To better mimic the behavior of human brains, different advanced methods have been proposed to identify domain knowledge and integrate it into deep models for data-efficient, generalizable, and interpretable deep learning, which we refer to as knowledge-augmented deep learning (KADL). In this survey, we define the concept of KADL, and introduce its three major tasks, i.e., knowledge identification, knowledge representation, and knowledge integration. Different from existing surveys that are focused on a specific type of knowledge, we provide a broad and complete taxonomy of domain knowledge and its representations. Based on our taxonomy, we provide a systematic review of existing techniques, different from existing works that survey integration approaches agnostic to taxonomy of knowledge. This survey subsumes existing works and offers a bird's-eye view of research in the general area of knowledge-augmented deep learning. The thorough and critical reviews of numerous papers help not only understand current progresses but also identify future directions for the research on knowledge-augmented deep learning.
translated by 谷歌翻译
The rapid development of aspect-based sentiment analysis (ABSA) within recent decades shows great potential for real-world society. The current ABSA works, however, are mostly limited to the scenario of a single text piece, leaving the study in dialogue contexts unexplored. In this work, we introduce a novel task of conversational aspect-based sentiment quadruple analysis, namely DiaASQ, aiming to detect the sentiment quadruple of target-aspect-opinion-sentiment in a dialogue. DiaASQ bridges the gap between fine-grained sentiment analysis and conversational opinion mining. We manually construct a large-scale, high-quality Chinese dataset and also obtain the English version dataset via manual translation. We deliberately propose a neural model to benchmark the task. It advances in effectively performing end-to-end quadruple prediction and manages to incorporate rich dialogue-specific and discourse feature representations for better cross-utterance quadruple extraction. We finally point out several potential future works to facilitate the follow-up research of this new task. The DiaASQ data is open at https://github.com/unikcc/DiaASQ
translated by 谷歌翻译
Several works have proven that finetuning is an applicable approach for debiasing contextualized word embeddings. Similarly, discrete prompts with semantic meanings have shown to be effective in debiasing tasks. With unfixed mathematical representation at the token level, continuous prompts usually surpass discrete ones at providing a pre-trained language model (PLM) with additional task-specific information. Despite this, relatively few efforts have been made to debias PLMs by prompt tuning with continuous prompts compared to its discrete counterpart. Furthermore, for most debiasing methods that alter a PLM's original parameters, a major problem is the need to not only decrease the bias in the PLM but also to ensure that the PLM does not lose its representation ability. Finetuning methods typically have a hard time maintaining this balance, as they tend to violently remove meanings of attribute words. In this paper, we propose ADEPT, a method to debias PLMs using prompt tuning while maintaining the delicate balance between removing biases and ensuring representation ability. To achieve this, we propose a new training criterion inspired by manifold learning and equip it with an explicit debiasing term to optimize prompt tuning. In addition, we conduct several experiments with regard to the reliability, quality, and quantity of a previously proposed attribute training corpus in order to obtain a clearer prototype of a certain attribute, which indicates the attribute's position and relative distances to other words on the manifold. We evaluate ADEPT on several widely acknowledged debiasing benchmarks and downstream tasks, and find that it achieves competitive results while maintaining (and in some cases even improving) the PLM's representation ability. We further visualize words' correlation before and after debiasing a PLM, and give some possible explanations for the visible effects.
translated by 谷歌翻译
Tensor program tuning is a non-convex objective optimization problem, to which search-based approaches have proven to be effective. At the core of the search-based approaches lies the design of the cost model. Though deep learning-based cost models perform significantly better than other methods, they still fall short and suffer from the following problems. First, their feature extraction heavily relies on expert-level domain knowledge in hardware architectures. Even so, the extracted features are often unsatisfactory and require separate considerations for CPUs and GPUs. Second, a cost model trained on one hardware platform usually performs poorly on another, a problem we call cross-hardware unavailability. In order to address these problems, we propose TLP and MTLTLP. TLP is a deep learning-based cost model that facilitates tensor program tuning. Instead of extracting features from the tensor program itself, TLP extracts features from the schedule primitives. We treat schedule primitives as tensor languages. TLP is thus a Tensor Language Processing task. In this way, the task of predicting the tensor program latency through the cost model is transformed into a natural language processing (NLP) regression task. MTL-TLP combines Multi-Task Learning and TLP to cope with the cross-hardware unavailability problem. We incorporate these techniques into the Ansor framework and conduct detailed experiments. Results show that TLP can speed up the average search time by 9.1X and 3.0X on CPU and GPU workloads, respectively, compared to the state-of-the-art implementation. MTL-TLP can achieve a speed-up of 4.7X and 2.9X on CPU and GPU workloads, respectively, using only 7% of the target hardware data.
translated by 谷歌翻译
Deep learning based methods have significantly boosted the study of automatic building extraction from remote sensing images. However, delineating vectorized and regular building contours like a human does remains very challenging, due to the difficulty of the methodology, the diversity of building structures, and the imperfect imaging conditions. In this paper, we propose the first end-to-end learnable building contour extraction framework, named BuildMapper, which can directly and efficiently delineate building polygons just as a human does. BuildMapper consists of two main components: 1) a contour initialization module that generates initial building contours; and 2) a contour evolution module that performs both contour vertex deformation and reduction, which removes the need for complex empirical post-processing used in existing methods. In both components, we provide new ideas, including a learnable contour initialization method to replace the empirical methods, dynamic predicted and ground truth vertex pairing for the static vertex correspondence problem, and a lightweight encoder for vertex information extraction and aggregation, which benefit a general contour-based method; and a well-designed vertex classification head for building corner vertices detection, which casts light on direct structured building contour extraction. We also built a suitable large-scale building dataset, the WHU-Mix (vector) building dataset, to benefit the study of contour-based building extraction methods. The extensive experiments conducted on the WHU-Mix (vector) dataset, the WHU dataset, and the CrowdAI dataset verified that BuildMapper can achieve a state-of-the-art performance, with a higher mask average precision (AP) and boundary AP than both segmentation-based and contour-based methods.
translated by 谷歌翻译